МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ШКОЛА №140 СОВЕТСКОГО РАЙОНА ВОЛГОГРАДА»

УТВЕРЖДАЮДиректор МОУ СШ №140
_______М.С.Брусенская «29» августа 2023 г.

ПРОГРАММА ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ДЕТЕЙ «Пилотирование БАС»

(наименование учебного предмета/курса)

техническая направленность

1 год

(срок реализации программы)

Составитель программы

Педагог дополнительного образования: Брусенская М.С.

Рассмотрена на заседании предметной кафедры Протокол №1от «29» авгута 2023 г. Руководитель предметной кафедры /М.А.Фарафонова /

1.1. Пояснительная записка

Программа «Пилотирование БАС» составлена в рамках федерального проекта «Стимулирование спроса на отечественные беспилотные авиационные системы» входящего в состав национального проекта «Беспилотные авиационные системы». Данная программа является дополнительной общеобразовательной общеразвивающей **технической направленности**, очной формы обучения, для обучающихся 10-15 лет, сроком реализации 1 год, **стартового уровня** освоения содержания.

Язык реализации программы – русский.

Программа составлена в соответствии с государственными требованиями к образовательным программам системы дополнительного образования детей на основе следующих нормативных документов:

- Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- Распоряжение Правительства Российской Федерации от 31.03.2022 № 678-р «Концепция развития дополнительного образования детей до 2030 года»;
- Приказ Министерства просвещения Российской Федерации от 27.07.2022 № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- Распоряжение Правительства Российской Федерации от 21.06.2023 № 1630—р «Об утверждении Стратегии развития беспилотной авиации Российской Федерации на период до 2030 года и на перспективу до 2035 года и плана мероприятий по ее реализации»
- Письмо Минобрнауки РФ от 18.11.2015 № 09-3242 «О направлении рекомендаций» (вместе «Методические рекомендации по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- Стратегия развития воспитания в Российской Федерации на период до 2025 года (утверждена распоряжением Правительства Российской Федерации от 29.05.2015 г. № 996-р);
- Указ Президента РФ от 29.05.2017 года № 240 «Об объявлении в Российской Федерации десятилетия детства»;
- Приоритетный проект «Доступное дополнительное образование для детей»;
- Постановление Главного государственного санитарного врача РФ от 28.09.2020 г. №28 «Об утверждении санитарных правил СП 2.4.3648 20 «Санитарно эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи».
 - Устав учреждения. Локальные нормативные акты учреждения.

Актуальность программы. В соответствии с утвержденной Правительством Российской Федерации распоряжением от 21 июня 2023 № 1630—р Стратегией развития беспилотной авиации на период до 2030 года и на перспективу до 2035 года, в ближайшие шесть с половиной лет в России должна

появиться новая отрасль экономики, связанная с производством и использованием гражданских беспилотных аппаратов. Данная программа в рамках федерального проекта «Кадры для Беспилотных авиационных систем» национального проекта «Беспилотные авиационные системы» обеспечивает обучающимся возможность освоить знания в области беспилотных летательных аппаратов, навыки программирования, моделирования и пилотирования, которые в настоящее время являются востребованными.

Концепция программы оказывает влияние на расширение дополнительного образования обучающихся, реализацию молодежной политики и создание системы подготовки специалистов в области разработки, производства и эксплуатации беспилотных авиационных систем, а также контроль за уровнем квалификации таких специалистов. При реализации проекта большое внимание уделяется привлечению обучающихся к участию в программах по беспилотным авиационным системам. Таким образом, возможно усилить технологический потенциал для обеспечения безопасности страны, повышения эффективности экономики и улучшения качества жизни граждан. В итоге в России должна возникнуть новая экономическая отрасль, связанная с разработкой и использованием гражданских беспилотных аппаратов.

Отличительная особенность настоящей программы заключается в том, что она интегрирует в себе достижения современных и инновационных направлений в малой беспилотной авиации, а также в рамках реализации программы задействованы цифровые технологии, включая цифровой образовательный контент.

Программа рассчитана на обучающихся 10-15 лет.

Дополнительная общеобразовательная программа «Пилотирование БАС» - модифицированная, разработана на основе методических рекомендаций «Технология разработки дополнительных общеобразовательных программ для образовательных организаций основного общего, среднего общего образования и образовательных организаций, реализующих программы среднего профессионального образования, в рамках федерального проекта «Кадры для Беспилотных авиационных систем», рекомендованных федеральным государственным бюджетным образовательным учреждением дополнительного образования «Институт развития профессионального образования».

Уровень освоения программы – стартовый.

Условия реализации программы

Условия формирования групп

Группы формируются в соответствии с возрастом учащихся. Допускается комплектование разновозрастных групп.

Программа предусматривает возможность включения в группу детей с OB3, относящихся к нозологическим группам, имеющим возможность самостоятельно обучаться или в сопровождении тьютора.

Объем программы и режим проведения занятий – 144 академических часа, 36 недель. Занятия проводятся – 2 раза в неделю по 2 академических часа с перерывом 10 минут, что определяется санитарно-эпидемиологическими правилами и нормативами.

Форма занятий — очная.

Дистанционная форма обучения не предусмотрена

Формы работы: на этапе изучения нового материала – лекции, объяснение, рассказ, демонстрация. На этапе закрепления изученного материала – беседы,

дискуссии, дидактическая или педагогическая игра. На этапе повторения изученного материала — наблюдение, устный контроль. На этапе проверки полученных знаний — тестирование, выполнение дополнительных заданий, публичное выступление с демонстрацией результатов работы, соревнование.

1.2. Цель и задачи программы

Цель: формирование и развитие профессиональной ориентации обучающихся, развитие интеллектуальных способностей и познавательного интереса к беспилотным авиационным системам.

Задачи:

Обучающие:

- 1. Освоить базовые знания об устройстве и функционировании беспилотных летательных аппаратов (БПЛА).
- 2. Реализовать межпредметные связи с физикой, математикой, информатикой, технологией, ОБЗР.
- 3. Повысить сенсорную чувствительность, развитие мелкой моторики и синхронизацию работы обеих рук за счет обучения пилотирования беспилотных летательных аппаратов.
- 4. Выработать навыки пилотирования беспилотных летательных аппаратов.
- 5. Научить правилам обслуживания, сборки беспилотных летательных аппаратов.
 - 6. Научить программированию БАС.
 - 7. Ознакомить с правилами безопасной работы с инструментами.
- 8. Ознакомить обучающихся с принципом работы авиамодельных двигателей и их грамотной эксплуатации.
- 9. Дать первоначальные знания по радиоэлектронике и обучить принципам работы радиопередающего оборудования, его настройкой.
- 10. Обучить правилам безопасной эксплуатации беспилотных летательных аппаратов.

Развивающие:

- 1. Развить у обучающихся инженерное мышление, навыки конструирования, программирования, проектной деятельности и эффективного использования БПЛА.
 - 2. Развить навыки пилотирования БПЛА на практике.
 - 3. Развить креативное мышление и пространственное воображение.
 - 4. Развить элементы изобретательности, творческой инициативы.
 - 5. Развить глазомер, быстроту реакцию.
 - 6. Развить усердие, терпение в освоении знаний.
- 7. Сформировать осознание роли техники и технологий для прогрессивного развития общества.
- 8. Развить психофизиологические качества обучающихся: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном.

Воспитательные:

1. Сформировать навыки работы в команде (коммуникативной культуры).

- 2. Привить навыки проектного мышления.
- 3. Воспитать интерес к технике и труду, развивать творческие способности и формировать конструкторские умения и навыки.
 - 4. Воспитать волю, чувство самоконтроля, ответственности.
- 5. Сформировать сознательное отношение к безопасности труда при изготовлении моделей.

Данная программа не предусматривает выдачу документа об обучении.

1.3. Содержание программы

Учебный план

№ п/п	Название темы	Всего часов	Теория	Практика	Формы аттестации
1	Основы беспилотных авиационных систем (БАС): архитектура БАС	12	8	4	Беседа
1.1	Вводное занятие. Теоретические основы БАС		4		
1.2	Архитектура БАС		4	4	
2	Значение и применение БАС в современном мире	4	4		Опрос
3	Техническое устройство и компоненты БАС	12	10	2	Тест
3.1	Основные технические характеристики БАС вертолетного и самолетного типов	4	4		
3.2	Классификация беспилотных летательных аппаратов	4	4		
3.3	Комплекс управления БАС	2		2	
3.4	Российские производители БАС и их цели.	2	2		
4	Принципы полета и управления БАС	40	4	36	Выполнение контрольного полетного

					задания
4.1	Безопасность полетов	2	2		
4.2	Техника базового пилотирования FPV	10	2	8	
4.3	Управление БАС	2		2	
4.4	Практика полетов БАС	14		14	
4.5	Аэродинамика и динамика полета	4		4	
4.6	Полеты в ограниченном пространстве», дрон – рейсинг	4		4	
4.7	Выполнение контрольного полетного задания	4		4	
5	Программирование БАС для полетов внутри помещения	22		22	Практическое задание
5.1	Блочное программирование	8		8	
5.2	Основы программирования БАС на Python	6		6	
5.3	Создать скрипт на языке программирования Python для самостоятельного управления квадрокоптером в помещении без использования сигнала GPS.	8		8	
6	Использование датчиков БАС и сбор данных	8	4	4	Беседа
6.1	Сенсоры и датчики для сбора данных	4	2	2	
6.2	Датчики: акселерометр, гироскоп, дальномер GPS	4	2	2	

7	Обработка и анализ данных полета БАС	4	2	2	Практическая работа
8	3D – моделирование и проектирование БАС	38	4	34	Практическая работа
8.1	Основы 3D — моделирования	6	4	2	
8.2	ПО для 3D — моделирования	8		8	
8.3	Подготовка 3D – модели к печати	14		14	
8.4	Использование 3D— принтера для печати комплектующих	10		10	
9	Итоговая аттестация	4		4	Защита проектной разработки
	итого:	144	36	108	

1.4. Содержание учебного плана

1. Основы беспилотных авиационных систем (БАС): архитектура БАС

1.1. Вводное занятие. Теоретические основы БАС.

Теория: Инструктаж по технике безопасности. Правила поведения в помещении, где проводятся занятия. Знакомство с беспилотными авиационными системами (БАС). Определение Беспилотной Авиационной Системы (БАС)

1.2. Архитектура БАС.

Теория: Значение архитектуры для эффективного функционирования и управления БАС. Виды и технические характеристики БАС: Аэростатические БАС, Реактивные БАС, БАС самолетного типа, БАС вертолетного типа, мультикоптерные и гибридные БАС.

Практика: Знакомство с мультироторной техникой разного назначения.

1.3. Значение и применения БАС в современном мире

Теория: Роль технических характеристик и различных видов БАС в решении различных задач.

2. Значение и применение БАС в современном мире.

Теория: Роль технических характеристик и различных видов БАС в решении задач различных сфер. (Военное дело, гражданское применение, логистика и доставка, публичная безопасность, научные исследования, коммерческая съемка и кинопроизводство, энергетика и др).

3. Техническое устройство и компоненты БАС.

3.1 Основные технические характеристики БАС вертолетного и самолетного типов.

Теория: Основные технические характеристики БАС вертолетного и самолетного типов.

3.2. Классификация беспилотных летательных аппаратов.

Теория: Виды и технические характеристики БАС: Аэростатические БАС, Реактивные БАС, БАС самолетного типа, БАС вертолетного типа, мультикоптерные и гибридные БАС.

3.3. Комплекс управления БАС.

Практика: Способы оборудования управления системы БАС.

3.4. Российские производители БАС и их цели.

Теория: Основные Российские производители БАС. Вклад в развитие отечественной индустрии БАС.

4. Принципы полёта и управления БАС.

4.1. Безопасность полётов

Теория: Определение безопасности полетов в контексте БАС. Значение безопасности для эффективного и надежного функционирования БАС. Анализ рисков и опасностей.

4.2. Техника базового пилотирования FPV

Теория: Тренажер FPV,

Практика: Управление БАС. В симуляторе выполните взлет с точки старта и посадку на точно обозначенную площадку, используя FPV — режим для управления. Пролетите сквозь серию ворот или между обозначенными маркерами, сохраняя стабильную высоту и скорость, в режиме FPV. Выполните полет по заранее заданному маршруту с изменением высоты, используя как FPV, так и вид с третьего лица для сравнения эффективности управления. Выполните серию разворотов на 180 градусов на ограниченной территории, используя FPV для точного маневрирования. Выполните задачу по сбору объектов с различных точек карты, используя FPV для навигации и точности при приближении к каждому объекту.

4.3. Управление БАС

Практика: Принципы управления самолетными БАС. Практика: выполните взлет БАС самолетного типа, достигните заданной высоты и стабилизируйте полет на прямой линии. Осуществите серию поворотов.

4.4. Практика полётов БАС

Практика: Практика полётов БАС.

4.5. Аэродинамика и динамика полета

Практика: Выполните полет на дроне в симуляторе при различных условиях полета. (Задание включает в себя выполнение маневров высшего пилотажа, полеты на разной скорости и высоте, а также в различных погодных условиях).

4.6. Полеты в ограниченном пространстве», дрон – рейсинг.

Практика: Выполните задание полет дрона в ограниченном пространстве, внутри здания или сквозь узкие проходы между препятствиями.

4.7. Выполнение контрольного полетного задания.

Практика: Выполнение контрольного полётного задания.

- 5. Программирование БАС для полетов внутри помещения.
- **5.1.** Блочное программирование.

Практика: Практика: Основные понятия о программировании и управлении БАС. Основные функции программного полета. Операционные системы и программы для программирования полета.

5.2. Особенности программирования БАС на Python.

Практика: Разработка алгоритма автономного полета БАС. Программирование алгоритмов управления БАС.

5.3. Создать скрипт на языке программирования Python для самостоятельного управления квадрокоптером в помещении без использования сигнала GPS.

Практика: Написать программу на Python для автономного полета БАС мульти роторного типа внутри помещения (В отсутствии GPS сигнала).

- 6. Использование датчиков БАС и сбор данных
- 6.1. Сенсоры и датчики для сбора данных.

Теория: Как работают датчики. Роль датчиков на устройстве.

Практика: Как датчики работают с информацией.

6.2. Датчики: акселерометр, гироскоп, дальномер GPS.

Теория: Определение датчиков и их роль в системе управления и навигации БАС.

Значение датчиков для обеспечения автономности, стабильности и безопасности полета.

Практика: Интегрируйте датчики в систему управления дрона, подключив их к ардуино–контроллеру полета.

7. Обработка и анализ данных полёта БАС.

Теория: Изучение технологии сбора и обработка данных фотограмметрии и ортофотосъёмки.

Практика: Анализ полученных данных по средствам фотограмметрической и ортофотосъемки.

8. 3D-моделирование и проектирование БАС

8.1. Основы 3D-моделирования.

Теория: Основные термины и понятия в 3D – моделировании.

Практика: Процесс создания 3D моделей.

8.2. ПО для 3D-моделирования .

Практика: Проектирование корпуса и деталей БАС.

8.3. Подготовка 3D-модели к печати.

Практика: Подготовить 3D-модель для печати на 3D-принтере. Отработать применение соответствующего инструментария программного обеспечения.

8.4. Использование 3D– принтера для печати комплектующих

Практика: Печать комплектующих деталей. Шлифовка и обработка деталей.

9. Итоговая аттестация

Практика: Защита проектной разработки.

Планируемые результаты обучения:

Личностные (воспитательные):

• сформированы навыки работы в команде (коммуникативной культуры);

- привиты навыки проектного мышления;
- сформирован интерес к технике и труду;
- развиты творческие способности;
- сформированы конструкторские умения и навыки;
- воспитаны чувство воли, самоконтроль и ответственность;
- сформировано сознательное отношение к безопасности труда при изготовлении моделей.

Метапредметные (развивающие):

- развиты инженерное мышление, навыки конструирования, программирования, проектной деятельности и эффективного использования БПЛА;
 - развиты навыки пилотирования БПЛА на практике;
 - развиты креативное мышление и пространственное воображение;
 - развиты элементы изобретательности, творческой инициативы;
 - развит глазомер, быстрота реакции;
 - развито усердие, терпение в освоении знаний;
- сформированы осознание роли техники и технологий для прогрессивного развития общества;
- развиты психофизиологические качества обучающихся: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном.

Предметные (обучающие):

- освоены базовые знания об устройстве и функционировании беспилотных летательных аппаратов (БПЛА);
- сформированы межпредметные связи с физикой, информатикой и математикой;
- разработаны сенсорная чувствительность, мелкая моторика и синхронизация работы обеих рук за счет обучения пилотирования беспилотных летательных аппаратов;
 - выработаны навыки пилотирования беспилотных летательных аппаратов;
- выучены правила обслуживания, сборки беспилотных летательных аппаратов;
 - сформировано умение программировать БАС;
 - ознакомлены с правилами безопасной работы с инструментами;
- ознакомлены с принципом работы авиамодельных двигателей и их грамотной эксплуатации.
- сформированы первоначальные знания по радиоэлектронике и принципам работы радиопередающего оборудования, его настройкой.
- выработаны правила безопасной эксплуатации беспилотных летательных аппаратов.

Раздел 2 «Комплекс организационно-педагогических условий»

2.1 Календарный график (разрабатывается ежегодно и вносится в отдельный документ)

2.2. Условия реализации программы Материально-техническое обеспечение программы

Для реализации программы необходимы следующие условия:

Общая зона:

- 1. Стеллаж,
- 2. Лестница-стремянка;
- 3. Рулетка измерительная,
- 4. Интерактивная панель;

Малая полётная зона:

- 1. Основная полетная зона;
- 2. Амортизирующие маты на пол основной полётной зоны;
- 3. Комплект трассы для полетов;
- 4. Система ультразвуковой навигации в помещении совместимая с БВС;

Ремонтная станция и зона 3D-печати:

- 1. Стол рабочий монтажника радиоаппаратуры;
- 2. Рабочее кресло на колесах;
- 3. Стол компьютерный;
- 4. 3D принтер;
- 5. Программное обеспечение для создания 3D моделей;
- 6. Программа для печати 3D принтера;
- 7. Паяльная станция с феном;
- 8. Дымоуловитель (Дымопоглотитель) настольный;
- 9. Клеевой пистолет;
- 10. Набор надфилей;
- 11. Штангенциркуль
- 12. Набор шарнирно-губцевого инструмента;
- 13. Набор комбинированных ключей;
- 14. Мультиметр;
- 15. Оловоотсос;
- 16. Набор пинцетов;
- 17. Стриппер для зачистки проводов;
- 18. Держатель «Третья рука» с лупой;
- 19. Коврик для пайки;
- 20. Прибор измерения напряжения батареи;
- 21. Рулетка измерительная;
- 22. Зажим для моторов;
- 23. Набор шестигранных ключей удлиненных;
- 24. Набор отверток для точных работ;
- 25. Торцевой ключ;
- 26. Шуруповерт (Аккумуляторная отвертка) + набор бит;

- 27. Ноутбук (или ПЭВМ);
- 28. Мышь компьютерная;
- 29. Ремкомплект, предназначенный для программируемого учебного набора квадрокоптера;
- 30. Ремкомплект, предназначенный для конструктора спортивного квадрокоптера;
 - 31. Тумба для инструментов слесарная;
 - 32. Совок и щётка;

Рабочее место учащегося

- 1. Программируемый учебный набор квадрокоптера;
- 2. Программируемый учебный квадрокоптер;
- 3. Конструктор спортивного квадрокоптера;
- 4. Дополнительные аккумуляторы для программируемых учебных наборов; квадрокоптеров и спортивных квадрокоптеров;
 - 5. FPV видео-очки (видео-шлем);
 - 6. Клеевой пистолет;
 - 7. Набор надфилей;
 - 8. Штангенциркуль;
 - 9. Набор шарнирно-губцевого инструмента;
 - 10. Набор комбинированных ключей;
 - 11. Прибор измерения напряжения LiPo батареи;
 - 12. Рулетка измерительная;
 - 13. Зажим для моторов;
 - 14. Набор шестигранных ключей удлиненных;
 - 15. Торцевой ключ;
 - 16. Ноутбук (или ПЭВМ);
 - 17. Десктопное программное обеспечение для ноутбука (или ПЭВМ);
 - 18. Фотограмметрическое программное обеспечение;
 - 19. Компьютерная мышь;
 - 20. Симулятор для автономных полетов;
 - 21. Симулятор для ручных полетов;
 - 22. Программное обеспечение для трехмерного моделирования;
 - 23. Рабочее кресло на колесах;
 - 24. Тумба для инструментов слесарная;
 - 25. Стол компьютерный;
 - 26. Корзина мусорная;
 - 27. Бестеневая лампа-лупа настольная;
 - 28. Рабочее место преподавателя;
 - 29. Ноутбук (или ПЭВМ);
 - 30. Пульт радиоуправления;
 - 31. Десктопное программное обеспечение для ноутбука (или ПЭВМ);
 - 32. Фотограмметрическое программное обеспечение;
 - 33. Симулятор для автономных полетов;
 - 34. Симулятор для ручных полетов;
 - 35. Программное обеспечение для создания 3D моделей;
 - 36. Компьютерная мышь;
 - 37. Стол компьютерный;
 - 38. Рабочее кресло на колесах;

- 39. МФУ;
- 40. Бестеневая лампа-лупа настольная;

Общее оборудование

- 1. Аптечка;
- 2. Огнетушитель;
- 3. Кулер;
- 4. Огнеупорный сейф/сумка для хранения для безопасного хранения АКБ;
 - Халат;
 - 6. Очки защитные;
 - 7. Перчатки;

Для успешного решения поставленных в программе педагогических задач требуется:

- 1. Информационно-методическое сопровождение программы.
- 2. Внедрение в практику работу личностно ориентированного подхода.
- 3. Умелое использование педагогами наиболее эффективных форм работы по развитию личности обучаемых.
 - 4. Творческое отношение к образовательному процессу.

Для достижения поставленных целей и задач программы рекомендуется использование следующих образовательных технологий:

- технология развивающего обучения;
- технология исследовательского обучения;
- здоровьесберегающие технологии;
- игровые технологии;
- технология проблемного обучения;
- сотрудничества.

Принципы реализации программы:

- комплексная обучающая деятельность по всем основным программы;
- вовлечение каждого ребёнка в активную работу на каждом занятии по программе;
- учёт возрастных особенностей детей при подаче всех обучающих материалов;
 - сочетание индивидуальных и коллективных форм обучения;
 - связь теории с практическими занятиями.

Методические материалы

Для реализации основного принципа программы — единства воспитания и обучения — используются различные методы:

- 1. Словесные.
- 2. Наглядные.
- 3. Практические.
- 4. Проектные.
- 5. Исследовательские.
- 6. Методика проблемного обучения.
- 7. Методика проектной деятельности.

Основные формы проведения занятий:

- 1. Лекшии.
- 2. Беседы.
- 3. Конструирование.
- 4. Соревнования.
- 5. Подготовка и участие в конкурсах.
- 6. Демонстрация.
- 7. Публичное выступление с демонстрацией результатов работы.

Данные формы обучения способствуют:

- пробуждению у учащихся интереса;
- эффективному усвоению учебного материала;
- самостоятельному поиску учащимися путей и вариантов решения поставленной учебной задачи (выбор одного из предложенных вариантов или нахождение собственного варианта и обоснование решения);
- установлению воздействия между учащимися, обучение работать в команде;
 - формирование у учащегося мнения и отношения;
 - формирование жизненных и профессиональных навыков.

Формы аттестации Формы отслеживания результатов обучения по программе

Виды контроля	Содержание	Формы контроля знаний
Текущий контроль	Освоение учебного материала.	диагностические задания: опросы, практические работы, тестирование, решение кейсов, выполнение упражнений и практических заданий.
Итоговая аттестация	Оценка уровня усвоения полученных знаний и приобретённых навыков.	Проект

2. 5. Оценочные материалы

Задачи	Результаты	Диагностические	Форма	Периодичность
		методы/форма	представления	
		контроля	результата	

Обучаю	Предметные	Наблюдение	Результаты	1 раз	В
щие		Тестирование	тестирования	полугодие	
Развиваю	Личностные	Наблюдение,	Результаты	1 раз	В
щие				полугодие	
Воспитат	Метапредметн	Наблюдение	Продукты	1 раз	В
ельные	ые		деятельности	полугодие	

Оценочные материалы

Итоговой формой контроля результативности усвоения программы является защита проекта, позволяющая оценить уровень учебных достижений обучающихся за весь период обучения.

Описание задания проекта

рамках пройденной основной и вариативной части Программы необходимо представить и защитить проектную работу в виде презентации и доклада к ней по темам в зависимости от выбранного модуля № 7. Выбор темы проекта является первоначальным шагом, где необходимо подробно описать цели и задачи проекта, его ключевые аспекты и содержание. Здесь также можно включить информацию о предметной области, методологии и инструментах, которые будут использованы в работе. Важно осветить, какая проблема будет решаться проектом и как он будет вносить вклад в научное или практическое направление. После подготовки описания темы проекта необходимо разработать презентацию, которая визуальной составляющей проекта. Презентация структурированной И логичной. содержать ключевую информацию И поддерживаться соответствующими графиками, диаграммами, изображениями и прочими иллюстративными материалами. В ней также следует поэтапно представить выполненную работу, привести аргументы в пользу выбранных решений и обосновать достигнутые результаты. Вместе с презентацией необходимо подготовить доклад к ней, который будет глубже раскрывать тему проекта, отвечать на вопросы и предоставлять объяснения по поводу примененных методов и результатов проекта. Доклад должен быть структурированным и легко читаемым, с использованием необходимых ссылок и примеров из проектной работы. Важно донести до аудитории все ключевые моменты проекта и дать возможность задавать вопросы или обсудить проблемы.

Предлагаемые темы для разработки проекта

Тема №1. Качества, которым должен соответствовать БАС при эксплуатации в полевых условиях.

Тема № 2. Качества, которым должен соответствовать БАС для применения в различных отраслях (выберите одну из изученных в Программе отраслей).

Критерии оценивания

№	Критерии оценивания	Содержание критерия оценки	Баллы
1.	Актуальность выбранной темы	Насколько работа интересна в практическом или теоретическом плане?	0-2
2.		Обращает ли автор внимание на новые технологии при разработке характеристик БАС?	0-2
3.		Обосновывает ли автор в своей работе выбранные критерии и качества применения в той или иной сфере?	0-2
4.	Теоретическая или практическая ценность	Результаты исследования доведены до идеи с использованием лексики по теме проекта	0-2
5.		Проделанная работа развивает умения и навыки обучающихся по темам, предусмотренными Программой?	0-2
6.		Автор в работе указал область и качество применения полученных знаний	0-2

Список литературы

- 1. Беспилотные летательные аппараты. Основы устройства и функционирования/Афанасьев, Учебники и учеб. пособ. Москва: МАИ. ISBN:978-5-85597-093-7.
- 2. Беспилотные летательные аппараты: нагрузки и нагрев: учебное пособие для среднего профессионального образования / В. И. Погорелов. 2-е изд., испр. и доп. Москва: Издательство 978–5–534–10061–7. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: htts://urait.ru/bcode/541222
- 3. Гурьянов А.Е. Моделирование управления квадрокоптером. Инженерный вестник. МГТУ им. Н.Э. Баумана. Электрон. журн. 2014. №8 Режим доступа: http://engbul.bmstu.ru/doc/723331.html
- 4. Ефимов. Е. Программируем квадрокоптер на Arduino. Режим доступа: http://habrahabr.ru/post/227425/
- 5. Институт транспорта и связи. Основы аэродинамики и динамики полета. Рига, 2010. Режим доступа: http://www.reaa.ru/yabbfilesB/Attachments/Osnovy_ajerodtnamiki_Riga.pdf
- 6. Организация обслуживания воздушного движения: учебник для среднего профессионального образования / А. Д. Филин, А. Р. Бестугин, В. А. Санников; под научной редакцией Ю. Г. Шатракова. Москва: Издательство Юрайт, 2022. 515 с. (Профессиональное образование). ISBN 978 5 534 07607 3.
- 7. Понфиленок О.В., Шлыков А.И., Коригодский А.А. «Клевер. Конструирование и программирование квадрокоптеров». Москва, 2016.
- **8.** Канатников А.Н., Крищенко А.П., Ткачев С.Б. Допустимые пространственные траектории беспилотного летательного аппарата в вертикальной плоскости. Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2012. №3. Режим доступа: http://technomag.bmstu.ru/doc/367724.html

9. Яценков В. Электроника. Твой первый квадрокоптер. Теория и практика. – СПб., БВХ-Петербург, 2016. 256 с.