муниципальное общеобразовательное учреждение «Лицей №3 Тракторозаводского района Волгограда»

Рассмотрено

на заседании НМС Руководитель НМС

О.В.Карпова

Протокол №1 от 28.08.2023 г.

Согласовано

методист

<u>Ело</u> Н.А.Еловенко 28.08.2023 г.

АММАЧТОЧИ КАРОЗАЧ

учебного курса «Избранные вопросы математики»

для обучающихся 10-11классов на 2023 - 2024 учебный год

Количество часов: 18

Составитель: Попыкина И.А., учитель математики

Пояснительная записка

Рабочая программа учебного курса «Избранные вопросы математики» предназначена для учащихся 10-11 классов. Курсу присущи систематизирующий и обобщающий характер изложений, направленность на закрепление и развитие умений и навыков, полученных на уроках математики.

Цель курса: — формирование умений применять полученные знания при решении «нетипичных», нестандартных задач; — создание условий для развития логического мышления, математической культуры и интуиции учащихся посредством решения задач повышенной сложности нетрадиционными методами.

Задачи курса: — актуализация, систематизация и обобщение знаний учащихся по математике; — формирование у учащихся понимания роли математических знаний как инструмента, позволяющего выбрать лучший вариант действий из многих возможных; — развитие интереса учащихся к изучению математики; — расширение научного кругозора учащихся; — обучение старшеклассников решению учебных и жизненных проблем, способам анализа информации, получаемой в разных формах; — формирование понятия о математических методах при решении сложных математических задач; — формировать умение решать основные практические задачи, а так же проводить сложные погические рассуждения, для решения более сложных заданий различных разделов математики. — формировать навыки использования нетрадиционных методов решения задач; развивать умения самостоятельно приобретать и применять знания.

Актуальность курса состоит в том, что он направлен на расширение знаний учащихся по математике, развитие их теоретического мышления и логической культуры. Предлагаемый курс содержит задачи по разделам, которые обеспечат более осознанное восприятие учебного материала. Включенные в программу задания позволяют повышать образовательный уровень всех учащихся, так как каждый сможет работать в зоне своего ближайшего развития.

Программа ориентирована на учащихся 10-11 классов, которым интересна как сама математика, так и процесс познания нового.

Курс рассчитан на 18 часов.

При проведении занятий по курсу на первое место выйдут следующие формы организации работы: групповая, парная, индивидуальная; методы работы: частично поисковые, эвристические, исследовательские, тренинги.

Планируемые результаты изучения учебного курса «Избранные вопросы математики»

Личностным результатом изучения курса является формирование следующих умений и качеств:

- 1) сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- 2) навыки сотрудничества со сверстниками и взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- 3) готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности.

Метапредметные результаты изучения курса:

1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать

и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;

- умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением техники безопасности, правовых и этических норм, норм информационной безопасности:
- владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Предметные результаты освоения курса ориентированы на обеспечение преимущественно общеобразовательной и общекультурной подготовки. Они должны обеспечивать возможность дальнейшего успешного профессионального обучения или профессиональной

В результате изучения курса учащиеся должны знать/понимать:

- основные способы решения задач, основные способы моделирования реальных ситуаций при решении задач различных типов;
- сущность метода рационализации неравенств;
- понятие уравнения (задач) с параметрами;
- основные типы задач с параметрами;
- основные методы решения задач с параметрами: аналитические методы, функционально-графические методы, метод областей;
- основные факты и теоремы о свойствах плоских фигур;
- ключевые (опорные) задачи планиметрии;
- теоремы: Чевы, Менелая, Стюарта, Птолемея.
 - В результате изучения курса учащиеся должны уметь:
- решать задачи на движение, совместную работу, смеси и сплавы;
- применять квадрат Пирсона для решения задач на смеси и сплавы;
- применять метод рационализации при решении показательных и логарифмических неравенств;
- применять ключевые теоремы и основные методы решения задач с параметрами при решении задач с параметрами;
- применять ключевые теоремы планиметрии, а также теоремы Чевы. Менелая, Стюарта, Птолемея при решении планиметрических задач.

Содержание учебного курса

Тема 1. Решение нестандартных текстовых задач (3 часа)

Нестандартные текстовые задачи и методы их решения (графические методы, перебор вариантов и т.д.).

Квадрат Пирсона для решения задач на смеси и сплавы.

Тема 2. Метод рационализации неравенств (5 часов)

Обобщенный метод интервалов. Метод рационализации для показательных и логарифмических неравенств. Трансцендентные уравнения и неравенства.

Тема 3. Задачи с параметрами (5 часов)

Понятие уравнения (задач) с параметрами. Основные типы задач с параметрами. Основные методы решения задач с параметрами: аналитические методы, функционально-графические методы, метод областей.

Тема 4. Ключевые задачи планиметрии для решения задач повышенного уровня сложности (4 часа)

Ключевые (опорные) задачи планиметрии. Теорема Чевы. Теорема Менелая и обратная ей теорема. Теорема Стюарта. Теорема Птолемея. Итоговое занятие (1 час)

Тематическое ппанирование

Тематическое планирование			
Наименование разделов	Кол-во часов		
Тема 1. Решение нестандартных текстовых задач	3		
1ема 2. Метод рационализации неравенств			
Тема 3. Задачи с параметрами			
Тема 4. Ключевые задачи планиметрии для решения задач повышенного уровня сложности	3		
Итоговое занятие	4		
Итого	l		
	18		

Литература

- 1. Прокофьев, А.А. ЕГЭ. Математика. Решения неравенств с одной переменной. / А.А. Прокофьев, А.Г. Корянов. Ростов н/Д: Легион, 2020.
- 2. Корянов, А.Г. Планиметрические задачи с неоднозначностью в условиях (многовариантные задачи). / А.Г. Корянов, А.А. Прокофьев. -Ростов н/Д: Легион, 2012.
- 3. Высоцкий, В.С. Задачи с параметрами при подготовке к ЕГЭ. / В.С. Высоцкий. М.: Научный мир, 2011.
- 4. 3000 задач с ответами по математике. / Под ред. Семенова А.Л., Ященко И.В. М.: Экзамен, 2018.
- 5. Математика. Отличник ЕГЭ. Решение сложных задач. / Панферов В.С., Сергеев И.Н. М.: Интеллект-Центр, 2012.
- 6. Математика. Учимся решать задачи с параметром. / Иванов С.О. и др. [Под ред. Лысенко Ф.Ф., Кулабухова С.Ю.] Ростов н/Д: Легион-М,
- 7. www.fipi.ru

Календарно-тематическое планирование

$N_{\underline{0}}$	Наименование тем/разделов	Кол-во	Дата	
Ton	a 1 Powerses	часов	план	факт
1.	а 1. Решение нестандартных текстовых задач (3 часа)			- T
1. 2.	Нестандартные текстовые задачи и методы их решения.	1		
	Нестандартные текстовые задачи и методы их решения.	1	2000	
3.	Квадрат Пирсона для решения залач на смеси и спларт.	1		
<u>l em</u>	а 2. Метод рационализации неравенств (5 часов)			100.00
!	Обобщенный метод интервалов.	1		
5.	Использование области допустимых значений и ограниченности функций. Метод интервалов для непрерывных функций.	1		
<u>. </u>	Показательные и логарифмические неравенства: использование монотонности функции.	<u> </u>	<u> </u>	
<u>'. </u>	ичетод рационализации и его использование при решении показательных и погарифационети успользование	<u>_</u>		
•	1 110 год рационализации и CIO использование при решении показатели и да за пораздатели и да за пораздатели и да	<u> </u>		<u> </u>
ема	To Sugar in Chapamer pamin (5 4acob)	I		
	Основные типы задач с параметрами. Основные методы решения задач с параметрами.			
0.	Ключевые теоремы для решения квадратных уравнений с параметрами.			_
1.	Решение квадратных уравнений с параметрами.			
2.	Решение задач с параметрами.	1		
3.	Решение задач с параметрами.	1		
ема	4. Ключевые задачи планиметрии для решения задач повышенного уровня сложности (4 часа)	1		
4.	Ключевые задачи планиметрии.	- N		
5.	Теорема Менелая. Теорема Чевы.	11	70	
<u> </u>	Теорема Стюарта.	1		
7.	Теорема Птолемея.	1	8 03.500 0 6660	
3.	Итоговое занятие	1		
	TITOLOGOC SQUYING	1	2 502	